

In the balanced molecular equation for the neutralization of sulfuric acid, $H_2SO_{4\,(aq)}$, with sodium hydroxide, the products in the balanced equation are:

 $\begin{array}{l} \text{A) } \text{NaSO}_{4 \ (aq)} + \text{H}_2\text{O}_{()} \\ \text{B) } \text{NaSO}_{3 \ (aq)} + 2 \ \text{H}_2\text{O}_{()} \\ \text{C) } 2 \ \text{NaSO}_{4 \ (aq)} + \text{H}_2\text{O}_{()} \\ \text{D) } \text{Na}_2\text{S}_{(aq)} + 2 \ \text{H}_2\text{O}_{()} \\ \text{E) } \text{Na}_2\text{SO}_{4 \ (aq)} + 2 \ \text{H}_2\text{O}_{()} \end{array}$

QUESTION

If an antacid contains Al(OH)₃ it will form AlCl₃ upon neutralization of stomach acid. How many moles of Clions are in 100.0 mL of 0.010 M AlCl₃?

A.0.0010 mol B.0.010 mol C.0.0030 mol D.0.030 mol

Molarity (M) = mol $AICl_3$ / Liter solution

mol $AICI_3 =$ Molarity $AICI_3$ x Volume solution (L)

QUESTION

If an antacid contains $Al(OH)_3$ it will form $AlCl_3$ upon neutralization of stomach acid. How many moles of $Cl^$ ions are in 100.0 mL of 0.010 M $AlCl_3$?

A.0.0010 mol B.0.010 mol C.0.0030 mol D.0.030 mol

Molarity (M) = moles $AICl_3$ / Liter solution

mol $AICI_3 =$ Molarity $AICI_3$ x Volume solution (L)

AICl₃ dissociates into 3 moles of CI-.

- . Most nitrate (NO_3^-) salts are soluble.
- 2. Most salts containing the alkali metal ions (Li⁺, Na⁺, K⁺, Cs⁺, Rb⁺) and the ammonium ion (NH₄⁺) are soluble.
- Most chloride, bromide, and iodide salts are soluble. Notable exceptions are salts containing the ions Ag⁺, Pb⁺, and Hg2⁺.
 Most utilize aller are college Notable avapations are BoSO. PbSO. He SO, and
- Most sulfate salts are soluble. Notable exceptions are BaSO₄, PbSO₄, Hg₂SO₄, and CaSO₄.
 Most bidenida cale are activated with the investment soluble bidenida are
- Most hydroxide salts are only slightly soluble. The important soluble hydroxides are NaOH and KOH. The compounds Ba(OH)₂, Sr(OH)₂, and Ca(OH)₂ are marginally soluble.
- 6. Most sulfide (S²⁻), carbonate (CO₃²⁻), chromate (CrO₄²⁻), and phosphate (PO₄³⁻) salts are only slightly soluble.

QUESTION

Given the insoluble compound $Al_2(CO_3)_3$ predict the ions and coefficients that would be necessary to complete the following net ionic equation:

- - + - \rightarrow $Al_2(CO_3)_3$

A.2 AICl₃ + 3 Na₂CO₃ also include 6 NaCl on right B.3 Al³⁺ + 2 CO₃²⁻ C.2 Al³⁺ + 3 CO₃²⁻ D.2 Al³⁺ 6 Cl⁻ + 3 CO₃²⁻ + 6 Na⁺

QUESTION

 $\underline{?} \operatorname{Na}_2 \operatorname{SO}_{4(aq)} + \underline{?} \operatorname{Ag}(\operatorname{NO}_3)_{3(aq)} \longrightarrow \underline{?} \operatorname{Ag}_2 \operatorname{SO}_{4(s)} + \underline{?} \operatorname{NaNO}_{3(aq)}$

The balanced net ionic equation for the reaction of sodium sulfate and silver nitrate contains which of the following species?

A) 2 Na⁺(aq) B) 2 NO₃⁻(aq) C) 2 Ag⁺(aq) D) 2 AgNO₃(aq) E) All of the above

QUESTION

If you began a reaction with the following ions in solution (all would be written with an (*aq*) subscript how would you represent the proper final net ionic equation? (Consult solubility Table.)

 $6Na^+ + 2PO_4^{3-} + 3Fe^{2+} + 6NO_3^- \rightarrow$

A. $3Na^{+} + PO_{4}^{3-} + Fe^{2+} + 2NO_{3}^{-} \rightarrow No \text{ Reaction}$ B. $6Na^{+} + 2PO_{4}^{3-} + 3Fe^{2+} + 6NO_{3}^{-} \rightarrow Fe_{3}(PO_{4})_{2}(s) + 6NaNO_{3}$ C. $3Na^{+} + PO_{4}^{3-} + Fe^{2+} + 2NO_{3}^{-} \rightarrow Fe_{3}(PO_{4})_{2}(s) + 6Na^{+} + 6NO_{3}^{-}$ D. $2PO_{4}^{3-} + 3Fe^{2+} \rightarrow Fe_{3}(PO_{4})_{2}(s)$

